Impact of increasing one-carbon metabolites on traumatic brain injury outcome using pre-clinical models

Author:

Joshi Sanika M.12,Thomas Theresa Currier3,Jadavji Nafisa M.12345ORCID

Affiliation:

1. College of Osteopathic Medicine, Midwestern University, Glendale, CA, USA

2. Department of Biomedical Sciences, Midwestern University, Glendale, CA, USA

3. Department of Child Health, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA

4. College of Veterinary Medicine, Midwestern University, Glendale, CA, USA

5. Department of Neuroscience, Carleton University, Ottawa, Canada

Abstract

Traumatic brain injury is a major cause of death and disability worldwide, affecting over 69 million individuals yearly. One-carbon metabolism has been shown to have beneficial effects after brain damage, such as ischemic stroke. However, whether increasing one-carbon metabolite vitamins impacts traumatic brain injury outcomes in patients requires more investigation. The aim of this review is to evaluate how one-carbon metabolites impact outcomes after the onset of traumatic brain injury. PubMed, Web of Science, and Google Scholar databases were searched for studies that examined the impact of B-vitamin supplementation on traumatic brain injury outcomes. The search terms included combinations of the following words: traumatic brain injury, dietary supplementation, one-carbon metabolism, and B-vitamins. The focus of each literature search was basic science data. The year of publication in the literature searches was not limited. Our analysis of the literature has shown that dietary supplementation of B-vitamins has significantly improved the functional and behavioral recovery of animals with traumatic brain injury compared to controls. However, this improvement is dosage-dependent and is contingent upon the onset of supplementation and whether there is a sustained or continuous delivery of vitamin supplementation post-traumatic brain injury. The details of supplementation post-traumatic brain injury need to be further investigated. Overall, we conclude that B-vitamin supplementation improves behavioral outcomes and reduces cognitive impairment post-traumatic brain injury in animal model systems. Further investigation in a clinical setting should be strongly considered in conjunction with current medical treatments for traumatic brain injury-affected individuals.

Publisher

Medknow

Subject

Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3