P-aminobenzoic acid promotes retinal regeneration through activation of Ascl1a in zebrafish

Author:

He Meihui123,Xia Mingfang123,Yang Qian123,Chen Xingyi123,Li Haibo123ORCID,Xia Xiaobo123ORCID

Affiliation:

1. Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China

2. Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China

3. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China

Abstract

JOURNAL/nrgr/04.03/01300535-202408000-00040/figure1/v/2023-12-16T180322Z/r/image-tiff The retina of zebrafish can regenerate completely after injury. Multiple studies have demonstrated that metabolic alterations occur during retinal damage; however to date no study has identified a link between metabolites and retinal regeneration of zebrafish. Here, we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration. Among the differentially-expressed metabolites, we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish. Then, we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish. Importantly, p-aminobenzoic acid activated Achaetescute complex-like 1a expression, thereby promoting Müller glia reprogramming and division, as well as Müller glia-derived progenitor cell proliferation. Finally, we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution. Taken together, these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.

Publisher

Medknow

Subject

Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3