Roles of neuronal lysosomes in the etiology of Parkinson's disease

Author:

Volta Mattia1ORCID

Affiliation:

1. Institute for Biomedicine, Eurac Research, Bolzano, Italy

Abstract

Therapeutic progress in neurodegenerative conditions such as Parkinson's disease has been hampered by a lack of detailed knowledge of its molecular etiology. The advancements in genetics and genomics have provided fundamental insights into specific protein players and the cellular processes involved in the onset of disease. In this respect, the autophagy-lysosome system has emerged in recent years as a strong point of convergence for genetics, genomics, and pathologic indications, spanning both familial and idiopathic Parkinson's disease. Most, if not all, genes linked to familial disease are involved, in a regulatory capacity, in lysosome function (e.g., LRRK2, alpha-synuclein, VPS35, Parkin, and PINK1). Moreover, the majority of genomic loci associated with increased risk of idiopathic Parkinson's cluster in lysosome biology and regulation (GBA as the prime example). Lastly, neuropathologic evidence showed alterations in lysosome markers in autoptic material that, coupled to the alpha-synuclein proteinopathy that defines the disease, strongly indicate an alteration in functionality. In this Brief Review article, I present a personal perspective on the molecular and cellular involvement of lysosome biology in Parkinson's pathogenesis, aiming at a larger vision on the events underlying the onset of the disease. The attempts at targeting autophagy for therapeutic purposes in Parkinson's have been mostly aimed at “indiscriminately” enhancing its activity to promote the degradation and elimination of aggregate protein accumulations, such as alpha-synuclein Lewy bodies. However, this approach is based on the assumption that protein pathology is the root cause of disease, while pre-pathology and pre-degeneration dysfunctions have been largely observed in clinical and pre-clinical settings. In addition, it has been reported that unspecific boosting of autophagy can be detrimental. Thus, it is important to understand the mechanisms of specific autophagy forms and, even more, the adjustment of specific lysosome functionalities. Indeed, lysosomes exert fine signaling capacities in addition to their catabolic roles and might participate in the regulation of neuronal and glial cell functions. Here, I discuss hypotheses on these possible mechanisms, their links with etiologic and risk factors for Parkinson's disease, and how they could be targeted for disease-modifying purposes.

Publisher

Medknow

Subject

Developmental Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3