RNA sequencing of exosomes secreted by fibroblast and Schwann cells elucidates mechanisms underlying peripheral nerve regeneration

Author:

Zhou Xinyang12,Lv Yehua3,Xie Huimin4,Li Yan2,Liu Chang2,Zheng Mengru2,Wu Ronghua2,Zhou Songlin2,Gu Xiaosong12,Li Jingjing5,Mi Daguo3ORCID

Affiliation:

1. Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China

2. Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China

3. Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, Jiangsu Province, China

4. Nantong Stomatological Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China

5. Department of General Practice, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China

Abstract

JOURNAL/nrgr/04.03/01300535-202408000-00035/figure1/v/2023-12-16T180322Z/r/image-tiff Exosomes exhibit complex biological functions and mediate a variety of biological processes, such as promoting axonal regeneration and functional recovery after injury. Long non-coding RNAs (lncRNAs) have been reported to play a crucial role in axonal regeneration. However, the role of the lncRNA-microRNA-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network in exosome-mediated axonal regeneration remains unclear. In this study, we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts (FC-EXOs) and Schwann cells (SC-EXOs). Differential gene expression analysis, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and protein-protein interaction network analysis were used to explore the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs. We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs, which suggests that it may promote axonal regeneration. In addition, using the miRWalk and Starbase prediction databases, we constructed a regulatory network of ceRNAs targeting Rps5, including 27 microRNAs and five lncRNAs. The ceRNA regulatory network, which included Ftx and Miat, revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury. Our findings suggest that exosomes derived from fibroblast and Schwann cells could be used to treat injuries of peripheral nervous system.

Publisher

Medknow

Subject

Developmental Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3