Visualizing Wallerian degeneration in the corticospinal tract after sensorimotor cortex ischemia in mice

Author:

Mu Jiao1,Hao Liufang2,Wang Zijue2,Fu Xuyang2,Li Yusen2,Hao Fei1,Duan Hongmei2,Yang Zhaoyang2ORCID,Li Xiaoguang12ORCID

Affiliation:

1. Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China

2. Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China

Abstract

Abstract JOURNAL/nrgr/04.03/01300535-202403000-00039/inline-graphic1/v/2023-09-27T141015Z/r/image-tiff Stroke can cause Wallerian degeneration in regions outside of the brain, particularly in the corticospinal tract. To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke, we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract. We first used a routine, sensitive marker of axonal injury, amyloid precursor protein, to examine Wallerian degeneration of the corticospinal tract. An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex, with no positive signal in distal parts of the corticospinal tract, at all time points. To improve visualization of Wallerian degeneration, we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons. Using this approach, we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke. In addition, microglia mobilized and activated early, from day 7 after stroke, but did not maintain a phagocytic state over time. Meanwhile, astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration. Moreover, no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract. In conclusion, our data provide evidence for dynamic, pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.

Publisher

Medknow

Subject

Developmental Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3