A novel loss-of-function variant in PNLDC1 inducing oligo-astheno-teratozoospermia and male infertility

Author:

Zhao Si-Yi1,Meng Lan-Lan23,Du Zhao-Li4,Tan Yue-Qiu23,He Wen-Bin23,Wang Xiong5

Affiliation:

1. The First Clinical College of Guangzhou Medical University, Guangzhou 511436, China

2. National Engineering and Research Center of Human Stem Cells and Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410008, China

3. Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha 410008, China

4. Yinfeng Gene Technology Co., Ltd., Jinan 250000, China

5. Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China

Abstract

Male infertility is a major reproductive disorder, which is clinically characterized by highly heterogeneous phenotypes of abnormal sperm count or quality. To date, five male patients with biallelic loss-of-function (LOF) variants of PARN-like ribonuclease domain-containing exonuclease 1 (PNLDC1) have been reported to experience infertility with nonobstructive azoospermia. The aim of this study was to identify the genetic cause of male infertility with oligo-astheno-teratozoospermia (OAT) in a patient from a Chinese Han family. Whole-exome and Sanger sequencing analyses identified a homozygous LOF variant (NM_173516.2, c.142C>T, p.Gln48Ter) in PNLDC1. Hematoxylin and eosin staining revealed that the spermatozoa of the patient with OAT had an irregular head phenotype, including microcephaly, head tapering, and globozoospermia. Consistently, peanut agglutinin staining of the spermatozoa revealed a complete or partial loss of the acrosome. Furthermore, the disomy rate of chromosomes in the patient’s spermatozoa was significantly increased compared with that of a fertile control sample. We reported an LOF variant of the PNLDC1 gene responsible for OAT.

Publisher

Medknow

Subject

Urology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3