A novel approach to enhance the performance of kallikrein 6 enzyme using Pichia pastoris GS115 as a host

Author:

Mahmoodi Fatemeh12,Bakherad Hamid2,Mogharrab Navid1,Rabbani Mohammad3

Affiliation:

1. Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.

2. Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.

3. Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.

Abstract

Background and purpose: Enzyme engineering is the process of raising enzyme efficiency and activity by altering amino acid sequences. Kallikrein 6 (KLK6) enzyme is a secreted serine protease involved in a variety of physiological and pathological activities. The increased expression of KLK6 plays a key role in various diseases. Instability and spontaneous activation and deactivation are major challenges in the study of this enzyme. This study aimed to create a stable pro-KLK6 enzyme by enzyme engineering, designing a specific cleavage site for enterokinase, and using Pichia pastoris GS115 as a host cell. Then, recombinant pro-KLK6 was used to introduce a novel inhibitor for it. Experimental approach: An engineered pro-KLK6 gene was cloned into the pPICZα A expression vector. Then, it was expressed in P. pastoris GS115 and purified by Ni-NTA chromatography. An inactive engineered pro-KLK6 gene was cleaved by enterokinase and converted to an active KLK6. The KLK6 enzyme activity and its kinetic parameters were measured using N-benzoyl-L-arginine ethyl ester (BAEE) substrates. Findings/Results: The secretory form of the pro-KLK6 was expressed at about 11 mg/L in P. pastoris (GS115). Before activation with enterokinase, pro-KLK6 was inactive and did not activate spontaneously. The kinetic parameters, including Km and Vmax, were estimated at 113.59 μM and 0.432 μM/s, respectively. Conclusion and implications: A stable pro-KLK6 enzyme was produced using P. pastoris (GS115) as the host cell and a specific cleavage site for enterokinase. Additionally, this study assessed the kinetic parameters of the KLK6 enzyme using the BAEE substrate for the first time.

Publisher

Medknow

Subject

General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3