MiR-92a-3p Knockdown Attenuates Transforming Growth Factor-β1-induced Tubulointerstitial Fibrosis by Targeting LIN28A-mediated EMT Pathway

Author:

Xu Mingzhi1,Pang Mingjiao1,Wang Chunli1,An Na1,Chen Ruman1,Bai Yafei1,He Jiqing1,Wang Chunli1,Qi# Yonghui1

Affiliation:

1. Blood Purification Center, Hainan General Hospital, Hai-nan Affiliated Hospital of Hainan Medical University, Haikou, China

Abstract

Abstract The role of microRNAs in regulating tubulointerstitial fibrosis, a key feature of progressive chronic kidney disease, is of significant importance. LIN28A has been reported to attenuate renal fibrosis in obstructive nephropathy. Here, our objective was to investigate the precise biological function of the miR-92a-3p/LIN28A axis in tubulointerstitial fibrosis. The human renal proximal tubular epithelial (HK-2) cell line was exposed to transforming growth factor (TGF)-β1, establishing an in vitro model mimicking tubulointerstitial fibrosis. Luciferase reporter assay was utilized to investigate the relationship between miR-92a-3p and LIN28A. Cell transfection techniques were employed to modify the expression of miR-92a-3p and LIN28A. An in vivo model of tubulointerstitial fibrosis was created by inducing unilateral ureteral obstruction (UUO) in C57BL/6N mice. Our initial observations showed that TGF-β1 treatment of HK-2 cells and the UUO mice model led to an increase in miR-92a-3p expression and a decrease in LIN28A expression. We confirmed that miR-92a-3p directly targeted LIN28A in HK-2 cells. In TGF-β1-stimulated HK-2 cells, knocking down miR-92a-3p notably reduced the levels of alpha smooth muscle actin and vimentin and concurrently enhanced the expression of E-cadherin. These changes were counteracted upon transfection with si-LIN28A. Thus, directing interventions toward miR-92a-3p holds the potential to emerge as a viable therapeutic approach for addressing tubulointerstitial fibrosis.

Publisher

Medknow

Reference33 articles.

1. Renal epithelial injury and fibrosis;Kaissling;Biochim Biophys Acta,2013

2. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-?B and MAPK signaling pathways;Li;Int J Mol Sci,2019

3. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis;Rastaldi;J Nephrol,2006

4. Epithelial and interstitial notch1 activity contributes to the myofibroblastic phenotype and fibrosis;Hong;Cell Commun Signal,2019

5. MicroRNAs in renal fibrosis;Chung;Front Physiol,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3