Machine learning-based predictions of yield strength for neutron-irradiated ferritic/martensitic steels
Author:
Funder
Indian Institute of Science
Publisher
Elsevier BV
Subject
Mechanical Engineering,General Materials Science,Nuclear Energy and Engineering,Civil and Structural Engineering
Reference69 articles.
1. Materials challenges for generation IV nuclear energy systems;Allen;Nucl. Technol.,2008
2. Materials challenges in nuclear energy;Zinkle;Acta Mater.,2013
3. A review on neutron-irradiation-induced hardening of metallic components;Azevedo;Eng. Fail. Anal.,2011
4. Helium generation in stainless steel and nickel;Bauer;J. Nucl. Mater.,1972
5. Low-activation ferritic and martensitic steels for fusion application;Kohyama;J. Nucl. Mater.,1996
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Establishing machine-learning approach for predicting outer-diametral strains in ferritic/martensitic (F/M) steel tubes during in-reactor neutron-irradiation creep experiments;Progress in Nuclear Energy;2024-12
2. Prediction of creep rupture life of ODS steels based on machine learning;Materials Today Communications;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3