Author:
Zhu Aobin,Zhang Ruirui,Zhang Linhuan,Yi Tongchuan,Wang Liwan,Zhang Danzhu,Chen Liping
Funder
National Forestry and Grassland Administration
Ministry of Science and Technology of the People's Republic of China
Beijing Academy of Agriculture and Forestry Sciences
Reference40 articles.
1. Tomato fruit detection and counting in greenhouses using deep learning;Afonso;Front. Plant Sci.,2020
2. Appe, S. N., G, A., & Gn, B., 2023. CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism. PeerJ. Computer science. 9, e1463. https://doi.org/10.7717/peerj-cs.1463.
3. Benjumea, A., Teeti, I., Cuzzolin, F., & Bradley, A., 2021. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. ArXiv. 2112.11798. https://doi.org/10.48550/ arXiv.2112.11798.
4. Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors;Cardellicchio;Comput. Electron. Agric.,2023
5. GA-YOLO: A Lightweight YOLO model for dense and occluded grape target detection;Chen;Horticulturae.,2023