Prediction of prognosis in lung cancer using machine learning with inter-institutional generalizability: A multicenter cohort study (WJOG15121L: REAL-WIND)
-
Published:2024-08
Issue:
Volume:194
Page:107896
-
ISSN:0169-5002
-
Container-title:Lung Cancer
-
language:en
-
Short-container-title:Lung Cancer
Author:
Fujimoto Daichi, Hayashi HidetoshiORCID, Murotani Kenta, Toi Yukihiro, Yokoyama Toshihide, Kato TerufumiORCID, Yamaguchi TeppeiORCID, Tanaka Kaoru, Miura SatoruORCID, Tamiya Motohiro, Tachihara MotokoORCID, Shukuya TakehitoORCID, Tsuchiya-Kawano Yuko, Sato Yuki, Ikeda SatoshiORCID, Sakata Shinya, Masuda Takeshi, Takemoto Shinnosuke, Otsubo KoheiORCID, Shibaki RyotaORCID, Makino Miki, Okamoto Isamu, Yamamoto NobuyukiORCID
Reference30 articles.
1. R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023, CA Cancer J. Clin. 73 (2023) 17–48. https://doi.org/10.3322/caac.21763. 2. ALEX Trial Investigators, Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer;Peters;N. Engl. J. Med.,2017 3. FLAURA Investigators, Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC;Ramalingam;N. Engl. J. Med.,2020 4. KEYNOTE-024 Investigators, Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer;Reck;N. Engl. J. Med.,2016 5. CASPIAN investigators, Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (Caspian): a randomised, controlled, open-label, phase 3 trial;Paz-Ares;Lancet.,2019
|
|