An incipient fault detection and self-learning identification method based on robust SVDD and RBM-PNN

Author:

Zhang ChuanfangORCID,Peng KaixiangORCID,Dong Jie

Funder

Natural Science Foundation of China

Fundamental Research Funds for the China Central Universities

Publisher

Elsevier BV

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Modelling and Simulation,Control and Systems Engineering

Reference36 articles.

1. Survey on data-driven industrial process monitoring and diagnosis;Qin;Annual Reviews in Control,2012

2. A review on basic data-driven approaches for industrial process monitoring;Yin;IEEE Transactions on Industrial Electronics,2014

3. Review of recent research on data-based process monitoring;Ge;Industrial & Engineering Chemistry Research,2013

4. Comparative study on monitoring schemes for non-gaussian distributed processes;Li;Journal of Process Control,2018

5. A novel robust semisupervised classification framework for quality-related coupling faults in manufacturing industries;Ma;IEEE Transactions on Industrial Informatics,2019

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved self-organizing mapping neural network and its application in fault diagnosis of CNC machine tool servo drive system;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-08-02

2. Spatial-Temporal Interaction Decoding Transformer for Unsupervised Multivariate Time Series Anomaly Detection;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

3. A Health Management Technology Based on PHM for Diagnosis, Prediction of Machine Tool Servo System Failures;Applied Sciences;2024-03-21

4. A Two-Layer Distributed Fault Diagnosis Method Based on Correlation Feature Transfer for Large-Scale Sequential Process Industries;IEEE Transactions on Instrumentation and Measurement;2024

5. A 30 kHz/√V Sensitivity Square-Rooting Voltage-to-Frequency Converter;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3