1. TensorFlow: Large-scale machine learning on heterogeneous systems;Abadi,2015
2. Identification of diversions in spent PWR fuel assemblies by PDET signatures using artificial neural networks (ANNs);Al-dbissi;Ann. Nucl. Energy,2023
3. Conceptual design and initial evaluation of a neutron flux gradient detector;Aldbissi;Nucl. Instrum. Methods Phys. Res. A,2022
4. Aldbissi, M., Vinai, P., Borella, A., Rossa, R., Pázsit, I., 2022b. Evaluation of the performance of a neutron gradient detector for partial defect testing in spent nuclear fuel assemblies. In: Proc. INMM 63rd Annual Meeting.
5. Aldbissi, M., Vinai, P., Rossa, R., Borella, A., Pázsit, I., 2023. Using machine learning for the detection of missing fuel pins in spent nuclear fuel assemblies based on measurements of the gradient of the neutron flux. In: Proc. INMM/ESARDA Joint Annual Meeting.