Fault classification and localization of multi-machine-based ieee benchmark test case power transmission lines using optimizable weighted extreme learning machine
Author:
Publisher
Elsevier BV
Reference48 articles.
1. Methodologies in power systems fault detection and diagnosis;Aleem;Energy Syst.,2015
2. Fault classification and localization in microgrids: leveraging discrete wavelet transform and multi-machine learning techniques considering single point measurements;Basher;Electric Power Syst. Res.,2024
3. Energy efficient fault detection and classification using hyperparameter-tuned machine learning classifiers with sensors;Bhattacharya;Measurement: Sensors,2023
4. A comparative evaluation of stacked auto-encoder neural network and multi-layer extreme learning machine for detection and classification of faults in transmission lines using WAMS data;Harish;Energy and AI,2023
5. Deep learning-based application for fault location identification and type classification in active distribution grids;Rizeakos;Appl. Energy,2023
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fault detection, classification and localization in HV power transmission lines using ANN;Electric Power Systems Research;2025-11
2. Noise Effects on Detection and Localization of Faults for Unified Power Flow Controller-Compensated Transmission Lines Using Traveling Waves;Electricity;2025-05-02
3. Transmission Line Protection based on Fine-Tuning CatBoost Fault Classification Technique;2025 International Conference on Sustainable Energy Technologies and Computational Intelligence (SETCOM);2025-02-21
4. Fault Detection, Classification and Localization in Power Transmission Lines Using ANN;2025-02-06
5. Intelligent fault diagnosis in power distribution networks using LSTM-DenseNet network;Electric Power Systems Research;2025-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2025 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3