A fuzzy-based multimodal approach for interpretable fake news detection
-
Published:2025-07
Issue:
Volume:179
Page:113277
-
ISSN:1568-4946
-
Container-title:Applied Soft Computing
-
language:en
-
Short-container-title:Applied Soft Computing
Author:
Gedara Tayasan Milinda H.ORCID,
Loia Vincenzo,
Tomasiello StefaniaORCID
Reference58 articles.
1. The rise of deepfakes: A conceptual framework and research agenda for marketing;Whittaker;Australas. Mark. J.,2021
2. A.L. Kavanaugh, S.D. Sheetz, R. Sandoval-Almazan, J.C. Tedesco, E.A. Fox, Media use during conflicts: information seeking gratifications & efficacy during 2012 Mexican elections, in: Proceedings of the 15th Annual International Conference on Digital Government Research, 2014, pp. 205–212.
3. J. Chien, Deep Bayesian mining, learning and understanding, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD’19, 2019, pp. 3197–312019.
4. Knowledge enhanced vision and language model for multi-modal fake news detection;Gao;IEEE Trans. Multimed.,2024
5. Mefand: A multimodel framework for early fake news detection;Sormeily;IEEE Trans. Comput. Soc. Syst.,2024