1. Explainable AI Methods - A Brief Overview;Holzinger,2022
2. A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts;Schwalbe;Data Min. Knowl. Discov.,2023
3. Greedy function approximation: A gradient boosting machine;Friedman;Ann. Statist.,2001
4. K. Simonyan, A. Vedaldi, A. Zisserman:, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, in: ICLR Workshops, 2014.
5. M.T. Ribeiro, S. Singh, C. Guestrin, “Why Should I Trust You?”: Explaining the Predictions of Any Classifier, in: ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144.