Author:
Appasani Deepthi,Bokkisam Charan Sai,Surendran Simi
Reference22 articles.
1. Akter, L., Islam, M.M., et al., 2021. Hepatocellular carcinoma patient’s survival prediction using oversampling and machine learning techniques, in: 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE. pp. 445–450.
2. Bifet, A., Gavalda, R., 2009. Adaptive learning from evolving data streams, in: Advances in Intelligent Data Analysis VIII: 8th International Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31-September 2, 2009. Proceedings 8, Springer. pp. 249–260.
3. Campos, D., Bernardes, J., 2010. Cardiotocography. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C51S4N.
4. Chandrika, V., Surendran, S., 2022a. Ai-enabled pregnancy risk monitoring and prediction: A review, in: 4th EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing: BDCC 2021, Springer. pp. 29–43.
5. Chandrika, V., Surendran, S., 2022b. Incremental machine learning model for fetal health risk prediction, in: 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), pp. 1–6. doi:10.1109/SMARTGENCON56628.2022. 10084232. [6] Chen, H., Boning, D., 2017. Online and incremental machine learning approaches for ic yield improvement, in: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), IEEE. pp. 786–793.