Prediction of compressive mechanical properties of three-dimensional mesoscopic aluminium foam based on deep learning method
Author:
Funder
Jilin Provincial Natural Science Foundation
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Mechanics of Materials,General Materials Science,Instrumentation
Reference71 articles.
1. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Software Available from Tensorflow;Abadi,2015
2. Deep materials informatics: applications of deep learning in materials science;Agrawal;MRS Communications,2019
3. Application of artificial neural networks in micromechanics for polycrystalline metals;Ali;Int. J. Plast.,2019
4. Manufacture, characterisation and application of cellular metals and metal foams;Banhart;Prog. Mater. Sci.,2001
5. Light-metal foams-history of innovation and technological challenges;Banhart;Adv. Eng. Mater.,2013
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Data-driven integration of synthetic representative volume elements and machine learning for improved microstructure-property linkage and material performance in ceramics;Computational Materials Today;2024-12
2. Microstructural characterization of bimodal composite metal foams under compression with machine learning;Composites Part A: Applied Science and Manufacturing;2024-10
3. Virtual rapid prototyping of materials with deep learning: spatiotemporal stress fields prediction in ceramics employing convolutional neural networks and transfer learning;Virtual and Physical Prototyping;2024-09-09
4. High temperature and mesostructure effect on aluminum foam compression responses;International Journal of Mechanical Sciences;2024-08
5. Comparative life cycle assessment and multi-criteria decision analysis of coffee capsules made with conventional and innovative materials;Sustainable Production and Consumption;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3