Funder
China Scholarship Council
National Natural Science Foundation of China
Reference52 articles.
1. Ahmed, A., Mohammad, Y.F., Parque, V., El-Hussieny, H., & Ahmed, S.M. (2022). End-to-End Mobile Robot Navigation using a Residual Deep Reinforcement Learning in Dynamic Human Environments.2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1-6.
2. Bach, N., Melnik, A., Schilling, M., Korthals, T., & Ritter, H. (2020). Learn to Move Through a Combination of Policy Gradient Algorithms: DDPG, D4PG, and TD3. In Machine Learning, Optimization, and Data Science (pp. 631–644). doi:10.1007/978-3-030-64580-9_52.
3. Agile and versatile robot locomotion via kernel-based residual learning;Carroll;IEEE International Conference on Robotics and Automation (ICRA),2023
4. Learning to predict consequences as a method of knowledge transfer in reinforcement learning;Chalmers;IEEE Transactions on Neural Networks and Learning Systems,2018
5. Du, H., Yu, X., & Zheng, L. (2020). Learning object relation graph and tentative policy for visual navigation. InComputer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16(pp. 19-34). Springer International Publishing.