1. Chemosensors for biogenic amines and biothiols;Kaur;J. Mater. Chem. B,2018
2. Chemical methods for mapping cysteine oxidation;Alcock;Chem. Soc. Rev.,2018
3. Metal and redox modulation of cysteine protein function;Giles;Chem. Biol.,2003
4. Metal-binding sites in proteins;Tainer;Curr. Opin. Biotechnol.,1991
5. (a) W. Maret, Optical methods for measuring zinc binding and release, zinc coordination environments in zinc finger proteins, and redox sensitivity and activity of zinc-bound thiols, Proc. Natl. Acad. Sci. U.S.A. 91 (1994) 237; (b) J. M. Berg, Y. Shi, The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc, Science 271(1996) 1081; (c) R. K. Pathak, V. K. Hinge, K. Mahesh, A. Rai, D. Panda, C. P. Rao, Cd2+ Complex of a Triazole-Based Calix[4]arene Conjugate as a Selective Fluorescent Chemosensor for Cys, Anal. Chem.84 (2012) 6907-6913; (d) Y. G. Shi, J. H. Yao, Y. L. Duan, Q. L. Mi, J. H. Chen, Q. Q. Xu, G. Z. Gou; Y. Zhou, J. F. Zhang, 1,8-Naphthalimide–Cu(II) ensemble based turn-on fluorescent probe for the detection of thiols in organic aqueous media, Bioorganic & Medicinal Chemistry Letters23 (2013) 2538-2542; (e) Y. Ma, F. Wang, S. Kambam, X. Chen, A quinoline-based fluorescent chemosensor for distinguishing cadmium from zinc ions using cysteine as an auxiliary reagent, Sensors and Actuators B 188 (2013) 1116-1122; (f) N. M. Giles, A. B. Watts, G. I. Giles, F. H. Fry, J. A. Littlechild, and C. Jacob, Metal and Redox Modulation of Cysteine Protein Function, Chemistry & Biology 10 (2003) 677-693.