Short-term electric load prediction using transfer learning with interval estimate adjustment

Author:

Jin Yuwei,Acquah Moses Amoasi,Seo Mingyu,Han Sekyung

Funder

Korea Institute of Energy Technology Evaluation and Planning

Korea Ministry of Trade Industry and Energy

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Building and Construction,Civil and Structural Engineering

Reference40 articles.

1. Ultra short-term power load forecasting based on combined LSTM-XGBoost model;Chen;Power Syst. Technol.,2020

2. Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model;Song;Energy Build.,2021

3. C. F. Zhao, C. Wan, Y. H. Song, and Z. J. Cao, “Optimal nonparametric prediction intervals of electricity load change,” IEEE Trans. Power Syst., vol. 35, no. 3, pp. 2467-2470, May. 2020.

4. Probabilistic forecasting of real-time LMP and network congestion;Ji;IEEE Trans. Power Syst.,2017

5. A novel short-term load forecasting framework based on time-series clustering and early classification algorithm;Chen;Energy Build.,2021

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An introduction to data-driven modelling of the water-energy-food-ecosystem nexus;Environmental Modelling & Software;2024-10

2. Probabilistic load forecasting based on quantile regression parallel CNN and BiGRU networks;Applied Intelligence;2024-06-07

3. A short-term energy consumption forecasting method for attention mechanisms based on spatio-temporal deep learning;Computers and Electrical Engineering;2024-03

4. The role of machine learning in improving power distribution systems resilience;Future Modern Distribution Networks Resilience;2024

5. Transfer Learning in Transformer-Based Demand Forecasting For Home Energy Management System;Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3