Deep neural networks for the efficient simulation of macro-scale hysteresis processes with generic excitation waveforms

Author:

Quondam-Antonio SimoneORCID,Riganti-Fulginei FrancescoORCID,Laudani AntoninoORCID,Lozito Gabriele-Maria,Scorretti Riccardo

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Control and Systems Engineering

Reference34 articles.

1. Using neural networks in the identification of Preisach-type hysteresis models;Adly;IEEE Trans. Magn.,1998

2. Utilizing neural networks in magnetic media modeling and field computation: A review;Adly;J. Adv. Res.,2014

3. Optimum identification of iron loss models in NGO electrical steel for power electronics;Antonio,2019

4. An effective neural network approach to reproduce magnetic hysteresis in electrical steel under arbitrary excitation waveforms;Antonio;J. Magn. Magn. Mater.,2021

5. Numerical simulations of vector hysteresis processes via the Preisach model and the Energy Based Model: An application to Fe-Si laminated alloys;Antonio;J. Magn. Magn. Mater.,2021

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An explainable neural network integrating Jiles-Atherton and nonlinear auto-regressive exogenous models for modeling universal hysteresis;Engineering Applications of Artificial Intelligence;2024-10

2. Neural network-based multiscale modeling of finite strain magneto-elasticity with relaxed convexity criteria;Computer Methods in Applied Mechanics and Engineering;2024-03

3. Experimental measurements and numerical modelling of additively manufactured Fe-Si cores;Journal of Magnetism and Magnetic Materials;2024-02

4. Hysteresis Loop Modeling of Piezoelectric Cantilevered Actuators Based on LSTM Neural Network;2023 3rd International Conference on Energy, Power and Electrical Engineering (EPEE);2023-09-15

5. Neural Estimator for Inductor Losses in Buck DC-DC Converters Operating in CCM;IEEE EUROCON 2023 - 20th International Conference on Smart Technologies;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3