A review of soft techniques for SMS spam classification: Methods, approaches and applications

Author:

Abayomi-Alli Olusola,Misra Sanjay,Abayomi-Alli Adebayo,Odusami Modupe

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Control and Systems Engineering

Reference115 articles.

1. Content Analysis of Fraudulent Nigeria Electronic Mails to Enhance e-Mail Classification using e-SCAT;Abayomi-Alli,2009

2. Arabic SMS Spam Detection Based on Semantic Classification;Abu Ouda,2017

3. SMSAD: a framework for spam message and spam account detection;Adewole,2017

4. Semi-supervised learning using frequent itemset and ensemble learning for SMS classification;Ahmed;Expert Syst. Appl.,2015

5. SMS spam detection using selected text features and boosting classifiers;Akbari,2015

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of dimension size and window size on word embedding in classification tasks;2024-07-08

2. Next-Gen Phishing Detection System Based on Federated Learning Integrated CNN-LSTM for SMS Communication;2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11

3. Performance Evaluation of Meta-data features for Spam SMS Classification using Sequential Models;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

4. Content Based Classification of Short Messages using Recurrent Neural Networks in NLP;2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA);2024-02-01

5. Development of the information-analytical system for monitoring external communications of the enterprise in C#;E3S Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3