Dynamic analysis and controller design for a slider–crank mechanism with piezoelectric actuators

Author:

Akbari Samin1,Fallahi Fatemeh2,Pirbodaghi Tohid1

Affiliation:

1. Mechanical Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA

2. University of Alberta, Edmonton, Canada

Abstract

Abstract Dynamic behaviour of a slider–crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage. Highlights Dynamic behaviour of a slider–crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. Controllers are based on feedback linearization approach and sliding mode controller.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FIDVR Capability of Hybrid Grid-Forming PV Power Plants During Feeder Restoration;IEEE Transactions on Energy Conversion;2024-09

2. Direct drive or slider-crank? Comparing motor-actuated flapping-wing micro aerial vehicles;Drone Systems and Applications;2024-01-01

3. REDUCING THE KINETIC POWER OF THE CRANK PRESS MACHINE;Ukrainian Journal of Mechanical Engineering and Materials Science;2023

4. Experimental Investigation of the Dynamics of a Slider-Crank Mechanism With Local Linear Force Input;Journal of Applied Mechanics;2021-12-21

5. A Crank Mechanism with Elastic Joints Having Preset Characteristics;Journal of Machinery Manufacture and Reliability;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3