1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
2. Model-based physiological noise removal in fast fMRI;Agrawal;NeuroImage,2020
3. Detection of physiological noise in resting state fMRI using machine learning;Ash;Hum. Brain Map.,2013
4. Extraction of the cardiac waveform from simultaneous multislice fMRI data using slice sorted averaging and a deep learning reconstruction filter;Aslan;NeuroImage,2019
5. A Deep Pattern Recognition Approach for Inferring Respiratory Volume Fluctuations from fMRI Data;Bayrak,2020