1. ShuffleNet V2: Practical guidelines for efficient CNN architecture design;Ma,2018
2. X. Zhang, X. Zhou, M. Lin, J. Sun, ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017, pp. 6848–6856.
3. MobileNets: Efficient convolutional neural networks for mobile vision applications;Howard,2017
4. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, MobileNetV2: Inverted Residuals and Linear Bottlenecks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
5. FitCNN: A cloud-assisted and low-cost framework for updating CNNs on IoT devices;Liu;Future Gener. Comput. Syst.,2019