Persulfate-enhanced continuous flow three-dimensional electrode dynamic reactor for treatment of landfill leachate
Author:
Publisher
Elsevier BV
Subject
Management, Monitoring, Policy and Law,Waste Management and Disposal,General Medicine,Environmental Engineering
Reference63 articles.
1. Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor;An;Chemosphere,2002
2. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate;Baiju;J. Environ. Manag.,2018
3. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode;Brillas;Electrochim. Acta,2004
4. The effect of aerobic conditions on the complexation ability between mercury and humic acid from landfill leachate and its implication for the environment;Chai;Chemosphere,2013
5. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate;Chen;Chemosphere,2015
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Intensive Treatment of Organic Wastewater by Three-Dimensional Electrode System within Mn-Loaded Steel Slag as Catalytic Particle Electrodes;Molecules;2024-02-21
2. Investigation and improvement of electrochemically activated peroxydisulfate systems for treating incineration leachate;Process Safety and Environmental Protection;2024-02
3. Recent progress of particle electrode materials in three-dimensional electrode reactor: synthesis strategy and electrocatalytic applications;Environmental Science and Pollution Research;2024-01-10
4. An overview of the recent advances and future prospects of three-dimensional particle electrode systems for treating wastewater;RSC Advances;2024
5. Development of a novel three-dimensional biofilm-electrode system (3D-BES) loaded with Fe-modified biochars for enhanced pollutants removal in landfill leachate;Science of The Total Environment;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3