Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite

Author:

Avazéri Cécile1,Turner Raymond J.2,Pommier Jeanine3,Weiner Joël H.2,Giordano Gérard3,Verméglio André1

Affiliation:

1. Laboratoire de Bioénergétique Cellulaire, Département d'Ecophysiologie Végétale et Microbiologie, CEA Cadarache, 13108 Saint Paul lez Durance, France

2. MRC Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7Canada

3. Laboratoire de Chimie Bactérienne, CNRS, 31 Chemin Joseph Augier, 13402 Marseille Cedex 20, France

Abstract

Tellurite and selenate reductase activities were identified in extracts of Escherichia coli. These activities were detected on non-denaturing polyacrylamide gels using an in situ methyl viologen activity-staining technique. The activity bands produced from membrane-protein extracts had the same RF values as those of nitrate reductases (NRs) A and Z. Tellurite and selenate reductase activities were absent from membranes obtained from mutants deleted in NRs A and Z. Further evidence of the tellurite and selenate reductase activities of NR was demonstrated using rocket immunoelectrophoresis analysis, where the tellurite and selenate reductase activities corresponded to the precipitation arc of NR. Additionally, hypersensitivity to potassium tellurite was observed under aerobic growth conditions in nar mutants. The tac promoter expression of NR A resulted in elevated tellurite resistance. The data obtained also imply that a minimal threshold level of NR A is required to increase resistance. Under anaerobic growth conditions additional tellurite reductase activity was identified in the soluble fraction on non-denaturing gels. Nitrate reductase mutants were not hypersensitive under anaerobic conditions, possibly due to the presence of this additional reductase activity.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3