Differential HSC70 expression during asexual development of Neurospora crassa

Author:

Fracella Franco1,Scholle Carl1,Kallies Andreas1,Häfker Thomas1,Schröder Torsten1,Rensing Ludger1

Affiliation:

1. Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen,PO Box 33 04 40, D-28334 Bremen,Germany

Abstract

The constitutive and the heat-shock-induced expression of members of heat-shock protein families changed during vegetative development and conidiation of Neurospora crassa as determined by two-dimensional gel electrophoresis. Western blot, and ELISA analyses revealed the highest amounts of the constitutive heat-shock protein 70 (HSC70) in conidiating aerial hyphae and dormant conidia. During conidial germination the amount of HSC70 decreased and subsequently increased during vegetative growth. Stationary mycelia and young aerial hyphae exhibited the lowest HSC70 level. The stationary-phase-dependent decrease in HSC70 was accompanied by a concomitant increase in its nuclear localization, whereas no significant changes in the amount of nuclear HSC70 were found during aerial hyphae development. The cAMP content during aerial hyphae development was inversely correlated with that of HSC70. To examine possible causal relations between HSC70 expression and cAMP content, the adenylate-cyclase-deficient mutant crisp (cr-1) was analysed, which exhibits low concentrations of endogenous cAMP. This mutant, however, showed a lower constitutive HSC70 level, compared to the bdA strain. Treatment of the bd strain and cr-1 mutant with 20 μM 8-bromo-cAMP did not result in significant changes of the constitutive HSC70 level, but in the level of heat-induced HSC/HSP70. In a developmental mutant (acon-2) which is defective in a differentiation step toward conidiation, the expression of HSC70 in aerial hyphae was delayed until the first proconidial chains were observed. It is concluded that the differential expression of HSC/HSP70 does not depend on different nuclear levels of HSC70 or on changes in cAMP concentrations, but rather on developmental genes controlling conidiation.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3