The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis

Author:

Ottolini Martin G.1,Blanco Jorge C. G.2,Eichelberger Maryna C.2,Porter David D.2,Pletneva Lioubov2,Richardson Joann Y.1,Prince Gregory A.2

Affiliation:

1. Department of Pediatrics, F. Edward Hébert School of Medicine, The Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA

2. Virion Systems, Inc., Rockville, MD, USA

Abstract

Influenza A virus continues to cause annual epidemics. The emergence of avian viruses in the human population poses a pandemic threat, and has highlighted the need for more effective influenza vaccines and antivirals. Development of such therapeutics would be enhanced by the use of a small-animal model that is permissive for replication of human influenza virus, and for which reagents are available to dissect the host response. A model is presented of nasal and pulmonary infection in adult inbred cotton rats (Sigmodon hispidus) that does not require viral ‘adaptation’. It was previously demonstrated that animals infected intranasally with 107TCID50of a recent H3N2 influenza, A/Wuhan/359/95, have increased breathing rates. In this report it is shown that this is accompanied by weight loss and decreased temperature. Virus replication peaked within 24 h in the lung, with peak titres proportional to the infecting dose, clearing by day 3. Replication was more permissive in nasal tissues, and persisted for 6 days. Pulmonary pathology included early bronchiolar epithelial cell damage, followed by extensive alveolar and interstitial pneumonia, which persisted for nearly 3 weeks. Interleukin 1 alpha (IL1α), alpha interferon (IFN-α), IL6, tumour necrosis factor alpha (TNF-α), GROαand MIP-1βmRNA were elevated soon after infection, and expression coincided with virus replication. A biphasic response was observed for RANTES, IFN-γ, IL4, IL10 and IL12-p40, with increased mRNA levels early during virus replication followed by a later increase that coincided with pulmonary inflammation. These results indicate that cotton rats will be useful for further studies of influenza pathogenesis and immunity.

Publisher

Microbiology Society

Subject

Virology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3