Prevalence and molecular epidemiology of plasmid-mediated fosfomycin resistance genes among blood and urinary Escherichia coli isolates

Author:

Ho Pak-Leung1,Chan Jane1,Lo Wai-U1,Lai Eileen L.1,Cheung Yuk-Yam1,Lau Terrence C. K.2,Chow Kin-Hung1

Affiliation:

1. Department of Microbiology and Carol Yu Centre for Infection, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, PR China

2. Department of Biology and Chemistry, College of Science and Engineering, City University of Hong Kong, PR China

Abstract

A total of 1878 non-duplicate clinical Escherichia coli isolates (comprising 1711 urinary isolates and 167 blood-culture isolates), which were collected from multiple centres in Hong Kong during 1996–2008, were used to investigate the prevalence and molecular epidemiology of plasmid-mediated fosfomycin (fos) resistance genes. Eighteen of the 1878 clinical E. coli isolates were fosfomycin resistant, of which six were fosA3 positive and two were positive for another fosA variant (designated fosKP96). No isolates had the fosC2 gene. The clones of the eight isolates were diverse: sequence type (ST) 95 (n = 2), ST118 (n = 1), ST131 (n = 1), ST617 (n = 1), ST648 (n = 1), ST1488 (n = 1) and ST2847 (n = 1). In the isolates, fosA3 and bla CTX-M genes were co-harboured on conjugative plasmids with F2:A−:B− (n = 2), N (n = 1), F–:A−:B1 and N (n = 1) and untypable (n = 2) replicons. Both fosKP96-carrying plasmids belonged to replicon N. RFLP analysis showed that the two F2:A−:B− plasmids carrying fosA3 and bla CTX-M-3 genes shared the same pattern. Complete sequencing of one of the two F2:A−:B− plasmids, pFOS-HK151325 (69 768 bp) demonstrated it to be >99 % identical to the previously sequenced plasmid pHK23a originating from a pig E. coli isolate in the same region. This study demonstrated the dissemination of fosA3 genes in diverse E. coli clones on multiple bla CTX-M-carrying plasmid types, of which F2:A−:B− plasmids closely related to pHK23a were shared by isolates from human and animal sources.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3