Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense

Author:

Biebl Hanno1,Pukall Rüdiger2,Lünsdorf Heinrich1,Schulz Stefan3,Allgaier Martin1,Tindall Brian J.2,Wagner-Döbler Irene1

Affiliation:

1. Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany

2. DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, D-38124 Braunschweig, Germany

3. Technical University of Braunschweig, Institute of Organic Chemistry, Braunschweig, Germany

Abstract

A slightly pink-coloured strain, strain DFL-11T, was isolated from single cells of the marine dinoflagellate Alexandrium lusitanicum and was found to contain the genes encoding two proteins of the photosynthetic reaction centre, pufL and pufM. 16S rRNA gene sequence analysis revealed that the novel strain belonged to the α-2 subgroup of the Proteobacteria and was most closely related to Stappia aggregata (97.7 % similarity), Stappia alba (98.0 %) and Stappia marina (98.0 %). Dark-grown cells of strain DFL-11T contained small amounts of bacteriochlorophyll a (bchl a) and a carotenoid. Cells of strain DFL-11T were rods, 0.5–0.7×0.9–3.0 μm in size and motile by means of a single, subpolarly inserted flagellum. The novel strain was strictly aerobic and utilized a wide range of organic carbon sources, including fatty acids, tricarboxylic acid cycle intermediates and sugars. Biotin and thiamine were required as growth factors. Growth was obtained at sea salt concentrations of between 1 and 10 % (w/v), at a pH between 6 and 9.2 and at a temperature of up to 33 °C (optimum, 26 °C). Nitrate was not reduced and indole was not produced from tryptophan. Strain DFL11T was resistant to potassium tellurite and transformed it to elemental tellurium. The major respiratory lipoquinone was ubiquinone 10 (Q10). The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, an unidentified aminolipid and the glycolipid sulphoquinovosyldiacylglyceride. The fatty acids comprised 16 : 1ω7c, 16 : 0, 18 : 1ω7c, 18 : 0, 11-methyl 18 : 1ω6t, 11-methyl 20 : 1ω6t, 20 : 1ω7c, 22 : 0, 22 : 1 and the hydroxy fatty acids 3-OH 14 : 0, 3-OH 16 : 0 (ester-linked), 3-OH 18 : 0, 3-OH 20 : 1 and 3-OH 20 : 0, all of which are amide-linked. The DNA G+C value was 56 mol%. Comparative analysis of α-2 subgroup 16S rRNA gene sequences showed that the type species of the genus Stappia, Stappia stellulata, is only distantly related to S. aggregata (95.3 % sequence similarity). Based on the combination of the 16S rRNA gene sequence data, a detailed chemotaxonomic study and the biochemical and physiological properties of members of the genera Stappia, Pannonibacter and Roseibium, it is proposed that S. aggregata, S. alba, S. marina are transferred to a new genus, Labrenzia gen. nov., as Labrenzia aggregata comb. nov., Labrenzia alba comb. nov. and Labrenzia marina comb. nov. The type species of the new genus is Labrenzia alexandrii sp. nov., with strain DFL-11T (=DSM 17067T=NCIMB 14079T) as the type strain. The pufLM genes of the photosynthesis reaction centre were shown to be present in some, but not all, species of the new genus Labrenzia and they were identified for the first time in S. stellulata. In accordance with the new data collected in this study, emended descriptions are provided for the genera Pannonibacter, Roseibium and Stappia.

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3