Multidrug resistance in Klebsiella pneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli

Author:

George Anthony M.1,Hall Ruth M.2,Stokes H. W.3

Affiliation:

1. Department of Biochemistry and Physiology, University of Technology Sydney, PO Box 123, Broadway NSW 2007, Australia

2. CSIRO Division of Biomolecular Engineering, Laboratory for Molecular Biology, PO Box 184, North Ryde NSW 2113, Australia

3. School of Biological Sciences, Macquarie University, Sydney NSW 2109, Australia

Abstract

Spontaneous multidrug-resistant (Mdr) mutants of Klebsiella pneumoniae strain ECL8 arose at a frequency of 2-2 � 10-8 and showed increased resistance to a range of unrelated antibiotics, including chloramphenicol, tetracycline, nalidixic acid, ampicillin, norfloxacin, trimethoprim and puromycin. A chromosomal fragment from one such mutant was cloned, and found to confer an Mdr phenotype on Escherichia coli K12 cells that was essentially identical to that of the K. pneumoniae mutant. Almost complete loss of the OmpF porin in the E. coli transformant, and of the corresponding porin in the K. pneumoniae mutant, was observed. The presence of the Mdr mutation in K. pneumoniae or the cloned K. pneumoniae ramA (resistance antibiotic multiple) locus in E. coli also resulted in active efflux of tetracycline, and increased active efflux of chloramphenicol. After transformation of a ramA plasmid into E. coli, expression of chloramphenicol resistance occurred later than expression of resistance to tetracycline, puromycin, trimethoprim and nalidixic acid. The ramA gene was localized and sequenced. It encodes a putative positive transcriptional activator that is weakly related to the E. coli MarA and SoxS proteins. A ramA gene was also found to be present in an Enterobacter cloacae fragment that has previously been shown to confer an Mdr phenotype, and it appears that ramA, rather than the romA gene identified in that study, is responsible for multidrug resistance. The ramA gene from the wild-type K. pneumoniae was identical to that of the mutant strain and also conferred an Mdr phenotype on E. coli, indicating that the mutation responsible for Mdr in K. pneumoniae had not been cloned.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3