Dual regulation of a polyethylene glycol degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103

Author:

Charoenpanich Jittima1,Tani Akio1,Moriwaki Naoko1,Kimbara Kazuhide1,Kawai Fusako1

Affiliation:

1. Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan

Abstract

The genes for polyethylene glycol (PEG) catabolism (pegB,C,D,AandE) inSphingopyxis macrogoltabidastrain 103 were shown to form a PEG-inducible operon. ThepegRgene, encoding an AraC-type regulator in the downstream area of the operon, is transcribed in the reverse direction. The transcription start sites of the operon were mapped, and three putativeσ70-type promoter sites were identified in thepegB,pegAandpegRpromoters. A promoter activity assay showed that thepegBpromoter was induced by PEG and oligomeric ethylene glycols, whereas thepegAandpegRpromoters were induced by PEG. Deletion analysis of thepegBpromoter indicated that the region containing the activator-binding motif of an AraC/XylS-type regulator was required for transcription of thepegBCDAEoperon. Gel retardation assays demonstrated the specific binding of PegR to thepegBpromoter. Transcriptional fusion studies ofpegRwithpegAandpegBpromoters suggested that PegR regulates the expression of thepegBCDAEoperon positively through its binding to thepegBpromoter, but PegR does not bind to thepegApromoter. Two specific binding proteins for thepegApromoter were purified and identified as a GalR-type regulator and an H2A histone fragment (histone-like protein, HU). The binding motif of a GalR/LacI-type regulator was found in thepegAandpegRpromoters. These results suggested the dual regulation of thepegBCDAEoperon through thepegBpromoter by an AraC-type regulator, PegR (PEG-independent), and through thepegAandpegRpromoters by a GalR/LacI-type regulator together with HU (PEG-dependent).

Publisher

Microbiology Society

Subject

Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3