A dopamine antagonist, domperidone enhances the replication of an oncolytic adenovirus in human tumour cells

Author:

Nishimae Fumitaka1,Sakurai Fuminori1ORCID,Ono Ryosuke1ORCID,Onishi Rika1,Takayama Kosuke1,Mizuguchi Hiroyuki2134

Affiliation:

1. Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan

2. Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan

3. Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan

4. The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan

Abstract

Oncolytic adenoviruses (OAds) have attracted much attention as novel anticancer agents. Numerous studies have examined the antitumour effects of combinational use of an OAd and anticancer agents; however, few chemical compounds enhancing OAd infection have been reported. In this study, we screened a food and drug administration (FDA)-approved drug library containing 1134 small chemical compounds to identify chemical compounds that enhance OAd replication in human tumour cells. We found that domperidone, a dopamine D2 receptor antagonist, significantly enhanced the replication of an OAd in human tumour cells, including human pancreatic tumour cells, by two–fivefold, resulting in improvement of OAd-mediated tumour cell killing activities. The E1A mRNA levels were significantly increased in domperidone-pre-treated cells following OAd infection, which contributed to the promotion of OAd replication. However, mRNA levels of the dopamine D2 receptor (DRD2), which is known to be a target molecule of domperidone, were undetectable in most of the tumour cells by real-time reverse transcription (RT)-PCR analysis, indicating that domperidone promoted OAd replication by acting on a molecule other than DRD2. This study provides important clues for the improvement of OAd-mediated cancer therapy.

Funder

Japan Society for the Promotion of Science London

Japan Agency for Medical Research and Development

Publisher

Microbiology Society

Subject

Virology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3