Application of sliding-window discretization and minimization of stochastic complexity for the analysis of fAFLP genotyping fingerprint patterns of Vibrionaceae

Author:

Dawyndt Peter1,Thompson Fabiano L.1,Austin Brian2,Swings Jean1,Koski Timo3,Gyllenberg Mats4

Affiliation:

1. Laboratorium voor Microbiologie, Universiteit Gent, B-9000 Gent, Belgium

2. School of Life Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

3. Department of Mathematics, University of Linköping, S-58183 Linköping, Sweden

4. Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

Abstract

Minimization of stochastic complexity (SC) was used as a method for classification of genotypic fingerprints. The method was applied to fluorescent amplified fragment length polymorphism (fAFLP) fingerprint patterns of 507 Vibrionaceae representatives. As the current BinClass implementation of the optimization algorithm for classification only works on binary vectors, the original fingerprints were discretized in a preliminary step using the sliding-window band-matching method, in order to maximally preserve the information content of the original band patterns. The novel classification generated using the BinClass software package was subjected to an in-depth comparison with a hierarchical classification of the same dataset, in order to acknowledge the applicability of the new classification method as a more objective algorithm for the classification of genotyping fingerprint patterns. Recent DNA–DNA hybridization and 16S rRNA gene sequence experiments proved that the classification based on SC-minimization forms separate clusters that contain the fAFLP patterns for all representatives of the species Enterovibrio norvegicus, Vibrio fortis, Vibrio diazotrophicus or Vibrio campbellii, while previous hierarchical cluster analysis had suggested more heterogeneity within the fAFLP patterns by splitting the representatives of the above-mentioned species into multiple distant clusters. As a result, the new classification methodology has highlighted some previously unseen relationships within the biodiversity of the family Vibrionaceae.

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Marginal and simultaneous predictive classification using stratified graphical models;Advances in Data Analysis and Classification;2015-02-11

2. Ecological diversification in the Bacillus cereus Group;Environmental Microbiology;2008-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3