Conservation of coding potential and terminal sequences in four different isolates of Borna disease virus

Author:

Pleschka Stephan1,Staeheli Peter2,Kolodziejek Jolanta3,Richt Jürgen A.1,Nowotny Norbert43,Schwemmle Martin2

Affiliation:

1. Institute of Virology, University of Giessen, D-35392 Giessen, Germany1

2. Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany2

3. Institute of Virology, University of Veterinary Sciences Vienna, A-1210 Vienna, Austria3

4. Department of Medical Microbiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates4

Abstract

We determined the complete nucleotide sequences of two poorly characterized strains of Borna disease virus (BDV) and compared them to reference strains V and He/80. Strain H1766 was almost 98% and 95% identical to strains V and He/80, respectively, whereas strain No/98 was only about 81% identical to both reference strains. In contrast to earlier reports, we found an additional A residue at the extreme 3′-end of the single-stranded RNA genome in all four BDV strains. The exact numbers of nucleotides in the four BDV genomes could not be determined due to a micro-heterogeneity at the 5′-end. If our longest sequence is a correct copy of the viral RNA, the two ends of the BDV genome would show almost perfect complementarity. All three transcription start sites, all four termination sites, both splice donor sites and both major splice acceptor sites are highly conserved, whereas a minor alternative splice acceptor site is not. The L protein of No/98 differs at 7% of its amino acid positions from the polymerase in the other strains, with most differences mapping to the C-terminal moiety of the molecule. Re-evaluation of L protein sequences of strains V and He/80 revealed differences at several positions compared to published information, indicating that variant forms of the viral polymerase have previously been characterized. These results are important because correct structures of genome ends and of the polymerase gene are the most critical parameters for the future development of techniques that will permit the genetic manipulation of BDV.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3