Generalizable characteristics of false-positive bacterial variant calls

Author:

Bush Stephen J.1ORCID

Affiliation:

1. Nuffield Department of Medicine, University of Oxford, Oxford, UK

Abstract

Minimizing false positives is a critical issue when variant calling as no method is without error. It is common practice to post-process a variant-call file (VCF) using hard filter criteria intended to discriminate true-positive (TP) from false-positive (FP) calls. These are applied on the simple principle that certain characteristics are disproportionately represented among the set of FP calls and that a user-chosen threshold can maximize the number detected. To provide guidance on this issue, this study empirically characterized all false SNP and indel calls made using real Illumina sequencing data from six disparate species and 166 variant-calling pipelines (the combination of 14 read aligners with up to 13 different variant callers, plus four ‘all-in-one’ pipelines). We did not seek to optimize filter thresholds but instead to draw attention to those filters of greatest efficacy and the pipelines to which they may most usefully be applied. In this respect, this study acts as a coda to our previous benchmarking evaluation of bacterial variant callers, and provides general recommendations for effective practice. The results suggest that, of the pipelines analysed in this study, the most straightforward way of minimizing false positives would simply be to use Snippy. We also find that a disproportionate number of false calls, irrespective of the variant-calling pipeline, are located in the vicinity of indels, and highlight this as an issue for future development.

Funder

National Institute for Health Research Health Protection Research Unit

Publisher

Microbiology Society

Subject

General Medicine

Reference63 articles.

1. FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science

2. Clinical Implications of Single Nucleotide Polymorphisms in Diagnosis of Asthma and its Subtypes

3. How valid is single nucleotide polymorphism (SNP) diagnosis for the individual risk assessment of breast cancer?

4. Rapid and accurate SNP genotyping of clonal bacterial pathogens with BioHansel;Labbé;bioRxiv,2020

5. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines;Bush;GigaScience,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3