Travel-associated lineages and unique endemic antimicrobial-susceptible lineages of Neisseria gonorrhoeae predominate in Western Australia

Author:

Al Suwayyid Barakat A.12,Haese Ethan C.2,Mowlaboccus Shakeel342,Pearson Julie C.3,Whiley David M.5,Armstrong Paul K.6,Giele Carolien M.6,Mak Donna B.76,Bastian Lisa6,Wise Michael J.82,Coombs Geoffrey W.34,Kahler Charlene M.29ORCID

Affiliation:

1. Ministry of Education, Riyadh, Saudi Arabia

2. The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Crawley, Australia

3. Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, Australia

4. Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Murdoch, Australia

5. The University of Queensland Centre for Clinical Research (UQ-CCR), Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia

6. Communicable Disease Control Directorate, Department of Health Western Australia, Perth, Australia

7. School of Medicine, University of Notre Dame Australia, Perth, Australia

8. School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia

9. Telethon Kids Institute, Nedlands, Australia

Abstract

In Australia, gonococcal isolates are monitored for antimicrobial susceptibilities. In Western Australia (WA), gonorrhoea notification rates increased by 63 % between 2013 and 2016, with the steepest increase occurring between 2015 and 2016, before stabilizing at this higher baseline between 2017 and 2020. This increased prevalence was associated with antimicrobial-susceptible (AMS) lineages. To understand the provenance of these isolates causing gonorrhoea in WA, whether they were introduced or expanded from endogenous lineages, 741 isolates were collected in 2017 and characterized by both iPLEX typing and whole genome sequencing (WGS). Antibiograms and genocoding of the isolates revealed that AMS isolates were most prevalent in the remote regions, while the urban/rural regions were characterized by antimicrobial-resistant (AMR) isolates. iPLEX typing identified 78 iPLEX genotypes (WA-1 to WA-78) of which 20 accounted for over 88 % of isolates. WA-10 was the most frequently identified genotype in the urban/rural regions whilst WA-29 was the most frequently identified genotype in the remote regions. Genotypes WA-38, WA-52 and WA-13 accounted for 81 % (n=36/44) of the azithromycin-resistant N. gonorrhoeae (AziR) isolates. A representative isolate of each iPLEX genotype and AMR biotype was whole genome sequenced and analysed using MLST, NG-MAST and NG-STAR, and the novel core genome clustering Ng_cgc_400 typing scheme. Five predominant Bayesian population groups (termed BPG-1 to 5) were identified in the study collection. BPG-1 and BPG-2 were associated with AMS isolates from the remote regions. BPG-1 and BPG-2 were shown to be unique to the remote regions based on a minimum spanning tree against 4000 international isolates. AMS isolates in urban/rural regions were dominated by international lineages. AziR and Cef DS (decreased susceptibility to ceftriaxone) was concentrated in three urban/rural genomic groups (BPG-3, 4 and 5). Azithromycin minimum inhibitory concentrations (0.5–16 mg l−1) correlated with the accumulation of mtrR mutations or/and the fraction of 23S rRNA C2611T mutated copies. The majority of isolates in BPG-3, 4 and 5 could be correlated with known AMR lineages circulating globally and nationally. In conclusion, the surge in AMS isolates in WA in 2017 was due to importation of international AMS lineages into urban/rural regions, whilst the local AMS lineages persisted largely in the remote regions. Bridging between the urban/rural and remote regions was relatively rare, but continued surveillance is required to prevent ingress of AMR strains/lineages into the remote regions of WA.

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3