The pleitropic regulator AdpAch is required for natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis

Author:

Du Yi-Ling1,Li Shan-Zhen1,Zhou Zhan1,Chen Shi-Fei1,Fan Wei-Ming2,Li Yong-Quan1

Affiliation:

1. Zhejiang University, College of Life Sciences, Hangzhou, Zhejiang 310058, PR China

2. Zhejiang Zhenyuan Pharmaceutical Co. Ltd, Shaoxing, Zhejiang 312000, PR China

Abstract

The complete natamycin (NTM) biosynthetic gene cluster of Streptomyces chattanoogensis was cloned and confirmed by the disruption of pathway-specific activator genes. Comparative cluster analysis with its counterpart in Streptomyces natalensis revealed different cluster architecture between these two clusters. Compared with the highly conserved coding sequences, sequence variations appear to occur frequently in the intergenic regions. The evolutionary change of nucleotide sequence in the intergenic regions has given rise to different transcriptional organizations in the two clusters and resulted in altered gene regulation. These results provide insight into the evolution of antibiotic biosynthetic gene clusters. In addition, we cloned a pleitropic regulator gene, adpAch , in S. chattanoogensis. Using the genetic system that we developed for this strain, adpAch was deleted from the genome of S. chattanoogensis. The ΔadpAch mutant showed a conditionally sparse aerial mycelium formation phenotype and defects in sporulation; it also lost the ability to produce NTM and a diffusible yellow pigment normally produced by S. chattanoogensis. RT-PCR analysis revealed that transcription of adpAch was constitutive in YEME liquid medium. By using rapid amplification of 5′ complementary DNA ends, two transcription start sites were identified upstream of the adpAch coding region. Quantitative transcriptional analysis showed that the expression level of the NTM regulatory gene scnRI decreased 20-fold in the ΔadpAch mutant strain, while the transcription of the other activator gene scnRII was not significantly affected. Electrophoretic mobility shift assay (EMSA) showed that AdpAch binds to its own promoter but fails to bind to the promoter region of scnRI, indicating that the control of scnRI by AdpAch is exerted in an indirect way. This work not only provides a platform and a new potential target for increasing the titre of NTM by genetic manipulation, but also advances the understanding of the regulation of NTM biosynthesis.

Funder

National Natural Science Foundation of China

Publisher

Microbiology Society

Subject

Microbiology

Reference25 articles.

1. Polyene antibiotic biosynthesis gene clusters;Aparicio;Appl Microbiol Biotechnol,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3