Cold atmospheric plasma inactivates Aspergillus flavus and Fusarium keratoplasticum biofilms and conidia in vitro

Author:

Roberts Darby1ORCID,Thomas Jonathan2ORCID,Salmon Jacklyn1,Cubeta Marc A.3ORCID,Stapelmann Katharina2ORCID,Gilger Brian C.1ORCID

Affiliation:

1. Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, USA

2. Department of Nuclear Engineering, College of Engineering, NC State University, Raleigh, NC, USA

3. Department of Entomology and Plant Pathology, College of Agriculture and Life Science, NC State University, Center for Integrated Fungal Research, Raleigh, NC, USA

Abstract

Introduction. Aspergillus flavus and Fusarium keratoplasticum are common causative pathogens of fungal keratitis (FK), a severe corneal disease associated with significant morbidity and vision loss. Escalating incidence of antifungal resistance to available antifungal drugs poses a major challenge to FK treatment. Cold atmospheric plasma (CAP) is a pioneering nonpharmacologic antimicrobial intervention that has demonstrated potential as a broad-spectrum antifungal treatment. Gap statement. Previous research highlights biofilm-associated resistance as a critical barrier to effective FK treatment. Although CAP has shown promise against various fungal infections, its efficacy against biofilm and conidial forms of FK pathogens remains inadequately explored. Aim. This study aims to investigate the antifungal efficacy of CAP against clinical fungal keratitis isolates of A. flavus and F. keratoplasticum in vitro. Methodology. Power parameters (22–27 kVpp, 300–400 Hz and 20–80 mA) of a dielectric barrier discharge CAP device were optimized for inactivation of A. flavus biofilms. Optimal applied voltage and total current were applied to F. keratoplasticum biofilms and conidial suspensions of A. flavus and F. keratoplasticum. The antifungal effect of CAP treatment was investigated by evaluating fungal viability through means of metabolic activity, c.f.u. enumeration (c.f.u. ml−1) and biofilm formation. Results. For both fungal species, CAP exhibited strong time-dependent inactivation, achieving greater than 80 % reduction in metabolic activity and c.f.u. ml−1 within 300 s or less, and complete inhibition after 600 s of treatment. Conclusion. Our findings indicate that CAP is a promising broad-spectrum antifungal intervention. CAP treatment effectively reduces fungal viability in both biofilm and conidial suspension cultures of A. flavus and F. keratoplasticum, suggesting its potential as an alternative treatment strategy for fungal keratitis.

Funder

Boehringer Ingelheim

Publisher

Microbiology Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3