Performance of metagenomic next-generation sequencing in cerebrospinal fluid for diagnosis of tuberculous meningitis

Author:

Lin Bi-Wei1,Hong Jian-Chen2,Jiang Zai-Jie1,Zhang Wei-Qing3,Fan Qi-Chao4,Yao Xiang-Ping51ORCID

Affiliation:

1. Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, PR China

2. Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China

3. Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China

4. Department of Infectious Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China

5. Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, PR China

Abstract

Purpose. Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases, while its performance in diagnosis of tuberculous meningitis (TBM) is incompletely characterized. The aim of this study was to assess the performance of mNGS in the diagnosis of TBM, and illustrate the sensitivity and specificity of different methods. Methods. We retrospectively recruited TBM patients between January 2021 and March 2023 to evaluate the performance of mNGS on cerebrospinal fluid (CSF) samples, in comparison with conventional microbiological testing, including culturing of Mycobacterium tuberculosis (MTB), acid-fast bacillus (AFB) stain, reverse transcription PCR and Xpert MTB/RIF. Results. Of the 40 enrolled, 34 participants were diagnosed with TBM, including 15(44.12 %) definite and 19(55.88 %) clinical diagnosis based upon clinical manifestations, CSF parameters, brain imaging, pathogen evidence and treatment response. The mNGS method identified sequences of Mycobacterium tuberculosis complex (MTBC) in 11 CSF samples. In patients with definite TBM, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of mNGS were 78.57, 100, 100, 66.67 and 85 %, respectively. Compared to conventional diagnostic methods, the sensitivity of mNGS (78.57 %) was higher than AFB (0 %), culturing (0 %), RT-PCR (60 %) and Xpert MTB/RIF (14.29 %). Conclusions. Our study indicates that mNGS of CSF exhibited an overall improved sensitivity over conventional diagnostic methods for TBM and can be considered a front-line CSF test.

Funder

National Natural Science Foundation of China

Publisher

Microbiology Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3