Development of an immunochromatographic lateral flow assay to rapidly detect OXA-23-, OXA-40-, OXA-58- and NDM-mediated carbapenem resistance determinants in Acinetobacter baumannii

Author:

Mertins Sonja12ORCID,Higgins Paul G.123ORCID,Thunissen Caroline4ORCID,Magein Henri4ORCID,Gilleman Quentin4ORCID,Mertens Pascal4ORCID,Rodríguez María González12,Maus Liza Marie12ORCID,Seifert Harald12ORCID,Krönke Martin12ORCID,Klimka Alexander21ORCID

Affiliation:

1. German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany

2. Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany

3. Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany

4. Coris BioConcept, Science Park CREALYS, Rue Jean Sonet 4A, B-5032 Gembloux, Belgium

Abstract

Introduction. Acinetobacter baumannii infections can be extremely challenging to treat owing to the worldwide prevalence of multidrug-resistant isolates, especially against carbapenems. Colonization with carbapenem-resistant A. baumannii (CRAb) requires rapid action from an infection control perspective because the organism is known for its propensity for epidemic spread. Hypothesis/Gap Statement. There is an unmet medical need to rapidly identify CRAb to enable appropriate antimicrobial treatment and to prevent transmission. Aim. Our aim was to expand the OXA-detection abilities of the rapid immunochromatographic test (ICT) OXA-23 K-SeT (Coris BioConcept) to include OXA-40- and OXA-58-like carbapenemases, which together confer carbapenem resistance to more than 94 % of CRAb isolates worldwide. Methodology. We used hybridoma technology to generate mAbs against OXA-40 and OXA-58 and selected them for productivity and specificity against recombinant and endogenous OXA-40 and OXA-58. Combinations of the resulting mAbs were analysed in ICT format for their ability to detect recombinant rOXA-40His6 or rOXA-58His6, respectively. Subsequently, selected antibody pairs were implemented into single-OXA-40 or single-OXA-58 prototypes and the final OXA-23/40/58/NDM ICT and were evaluated on clinical Acinetobacter spp. isolates with well-defined carbapenem resistance mechanisms. Results. Five anti-OXA-40 and anti-OXA-58 mAbs were selected. Competition ELISA with combinations of these antibodies revealed that the anti-OXA-40 antibodies bind to one of two binding clusters on OXA-40, while anti-OXA-58 antibodies bind to one of four binding clusters on OXA-58. Direct binding to the corresponding antigen in an ICT format has left only three antibodies against rOXA-40His6 and rOXA-58His6, respectively for the subsequent sandwich ICT selection procedure, which revealed that the anti-OXA-40 (#5) and anti-OXA-58 (#A8) mAbs in combination with the cross-reactive mAb #C8 performed best. They were implemented into single-OXA-40 and single-OXA-58 ICT prototypes and evaluated. These single ICT prototypes demonstrated 100 % specificity and sensitivity. Based on these results, an OXA-23/40/58/NDM-ICT was developed, complemented with OXA-23 and NDM-specific detection. An evaluation with selected carbapenem-resistant Acinetobacter spp. isolates (n=34) showed 100 % specificity. Conclusion. With this easy-to-use detection assay, one can save 12–48 h in diagnostics, which helps to treat patients earlier with appropriate antibiotics and allows immediate intervention to control transmission of CRAb.

Funder

Deutsches Zentrum für Infektionsforschung

Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen

European Regional Development Fund

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3