Evaluation of anti-biofilm effect of antimicrobial sonodynamic therapy-based periodontal ligament stem cell-derived exosome-loaded kojic acid on Enterococcus faecalis biofilm

Author:

Pourhajibagher Maryam1,Azimi Mohammadabadi Maryam2,Ghafari Hassan-Ali3,Hodjat Mahshid1,Bahador Abbas45

Affiliation:

1. Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran

2. Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

3. Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran

4. Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran

5. Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Introduction. Antimicrobial sonodynamic therapy (aSDT) is an approach that uses ultrasound waves (UWs) and a sonosensitizer to generate reactive oxygen species (ROS) to damage microbial cells in biofilms. Using nano-carriers, such as exosomes (Exos), to deliver the sonosensitizer can potentially enhance the effectiveness of aSDT. Hypothesis/Gap Statement. aSDT can downregulate the expression of gelE and sprE genes, increasing the production of endogenous ROS and degradation of pre-formed Enterococcus faecalis biofilms. Aim. This study investigated the anti-biofilm effect of aSDT-based periodontal ligament stem cell-derived exosome-loaded kojic acid (KA@PDL-Exo) on pre-formed E. faecalis biofilms in root canals. Methodology. Following the isolation and characterization of PDL-Exo, KA@PDL-Exo was prepared and confirmed. The minimal biofilm inhibitory concentration (MBIC) of KA, PDL-Exo, KA@PDL-Exo and sodium hypochlorite (NaOCl) was determined, and their anti-biofilm effects were assessed with and without UWs. The binding affinity of KA with GelE and SprE proteins was evaluated using in silico molecular docking. Additionally, the study measured the generation of endogenous ROS and evaluated changes in the gene expression levels of gelE and sprE. Results. The results revealed a dose-dependent decrease in the viability of E. faecalis cells within biofilms. KA@PDL-Exo was the most effective, with an MBIC of 62.5 µg ml−1, while NaOCl, KA and PDL-Exo had MBIC values of 125, 250 and 500 µg ml−1, respectively. The use of KA@PDL-Exo-mediated aSDT resulted in a significant reduction of the E. faecalis biofilm (3.22±0.36 log10 c.f.u. ml−1; P<0.05). The molecular docking analysis revealed docking scores of −5.3 and −5.2 kcal mol−1 for GelE-KA an SprE-KA, respectively. The findings observed the most significant reduction in gene expression of gelE and sprE in the KA@PDL-Exo group, with a decrease of 7.9- and 9.3-fold, respectively, compared to the control group (P<0.05). Conclusion. The KA@PDL-Exo-mediated aSDT was able to significantly reduce the E. faecalis load in pre-formed biofilms, decrease the expression of gelE and srpE mRNA, and increase the generation of endogenous ROS. These findings imply that KA@PDL-Exo-mediated aSDT could be a promising anti-biofilm strategy that requires additional in vitro and in vivo investigations.

Funder

Tehran University of Medical Science & Health Services

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3