Phenotypic variability and phylogenetic relationships of the genera Tolypothrix and Calothrix (Nostocales, Cyanobacteria) from running water

Author:

Berrendero Esther1,Perona Elvira1,Mateo Pilar1

Affiliation:

1. Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

The taxonomy of heterocystous cyanobacteria belonging to the genera Calothrix and Tolypothrix has long been a matter of debate, but their phylogenetic relationships are still not well understood. Our aim was to compare the phylogeny and morphology of members of these genera, which exhibit basal–apical polarity. A phylogeny was reconstructed on the basis of 16S rRNA gene sequences and compared with the morphological characterization of new isolates and environmental samples. Strains isolated from several rivers and streams showed a high degree of tapering when they were cultured in a nutrient-rich medium. However, clear differences were apparent when they were transferred to a nutrient-poor medium. Some strains showed a low degree of tapering and other morphological features corresponding to the genus Tolypothrix, such as false branching, whereas others maintained the morphological characteristics of the genus Calothrix. Phylogenetic analysis was congruent with the phenotypic characterization, in which the strains and environmental samples of the Tolypothrix and Calothrix morphotypes could be clearly separated. Isolates with a low degree of tapering and natural samples of Tolypothrix distorta were grouped in the same cluster, but strains of the genus Calothrix fell into well separated clades. Results from this study showed that representatives of the genus Tolypothrix share most morphological and developmental properties and a high degree of 16S rRNA gene sequence similarity. However, although similar and sometimes overlapping morphologies may occur in isolates of the genus Calothrix, these morphotypes may be distinguished on the basis of their clear genetic divergence.

Funder

Comunidad Autónoma de Madrid

Ministerio de Educación y Ciencia, Spain

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3