Genital human papillomavirus infections: current and prospective therapies

Author:

Stanley Margaret A.1

Affiliation:

1. Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK

Abstract

Infection with human papillomaviruses (HPVs) is very common and associated with benign and malignant epithelial proliferations of skin and internal squamous mucosae. A subset of the mucosal HPVs are oncogenic and associated with 5 % of all cancers in men and women. There are two licensed prophylactic vaccines, both target HPV 16 and 18, the two most pathogenic, oncogenic types and one, additionally, targets HPV 6 and 11 the cause of genital warts. The approach of deliberate immunization with oncogenic HPV E6 and/or E7 proteins and the generation of antigen-specific cytotoxic T-cells as an immunotherapy for HPV-associated cancer and their high-grade pre-cancers has been tested with a wide array of potential vaccine delivery systems in Phase I/II trials with varying success. Understanding local viral and tumour immune evasion strategies is a prerequisite for the rational design of therapeutic vaccines for HPV-associated infection and disease, progress in this is discussed. There are no antiviral drugs for the treatment of HPV infection and disease. Current therapies are not targeted antiviral therapies, but either attempt physical removal of the lesion or induce inflammation and a bystander immune response. There has been recent progress in the identification and characterization of molecular targets for small molecule antagonists of the HPV proteins E1, E2 and E6 or their interactions with their cellular targets. Lead compounds that could disrupt E1–E2 protein–protein interactions have been discovered as have inhibitors of E6–E6-AP-binding interactions. Some of these compounds showed nanomolar affinities and high specificities and demonstrate the feasibility of this approach for HPV infections. These studies are, however, at an early phase and it is unlikely that any specific anti-HPV chemotherapeutic will be in the clinic within the next 10–20 years.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3