Achieving Salinity-Tolerance in Cereal Crops: Major Insights into Genomics-Assisted Breeding (GAB)

Author:

Baran Singh Ram,Devi Rajni

Abstract

Cereal crops including rice, wheat, corn, sorghum, pearl millet and small millet, are grown for food, feed and fuel in crop-livestock based agricultural systems around the world. Soil salinity occupies an important place among the soil problems that threaten the sustainability of agriculture in a wide area around the world. Salinity intensity is predicted to exacerbate further due to global warming and climate change, requiring greater attention to crop breeding to increase resilience to salinity-induced oxidative stress. Knowledge of physiological responses to varying degrees of oxidative stress has helped predict crop agronomic traits under saline ecosystems and their use in crop breeding programs. Recent developments in high-throughput phenotyping technologies have made it possible and accelerated the screening of vast crop genetic resources for traits that promote salinity tolerance. Many stress-tolerant plant genetic resources have been developed using conventional crop breeding, further simplified by modern molecular approaches. Considerable efforts have been made to develop genomic resources which used to examine genetic diversity, linkage mapping (QTLs), marker-trait association (MTA), and genomic selection (GS) in crop species. Currently, high-throughput genotyping (HTPG) platforms are available at an economical cost, offering tremendous opportunities to introduce marker-assisted selection (MAS) in traditional crop breeding programs targeting salinity. Next generation sequencing (NGS) technology, microenvironment modeling and a whole-genome sequence database have contributed to a better understanding of germplasm resources, plant genomes, gene networks and metabolic pathways, and developing genome-wide SNP markers. The use of developed genetic and genomic resources in plant breeding has paved a way to develop high yielding, nutrient-rich and abiotic stress tolerant crops. Present chapter provides an overview of how the strategic usage of genetic resources, genomic tools, stress biology, and breeding approaches can further enhance the breeding potential and producing salinity-tolerant crop varieties/lines.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3