Modeling Study of Impact Effect of Chemical Reactions on Nitrogen Oxide Conversion in N2/O2 Mixtures under Various O2 Concentrations

Author:

Sarah Medjahdi Ines,Karim Ferouani Abdel,Sahlaoui Mohammed,Lemerini Mostefa

Abstract

The main objective of this study is to understand the influence of various chemical reactions that participate on NO creation or reduction in N2/O2 mixed gas induced by negative corona discharge under different O2 concentrations (5%, 10%, 15%, 20% and 25%). The basic chemistry of NO evolution that is presented in this study is based on a comprehensive collection of processes that were gathered into 150 specific chemical reactions involving 25 molecular, excited, atomic, and charged entities. Without the diffusion and convective factors, the density was computed using the continuity equation over a range of electric reduction fields between 50 and 90 Td (1Td = 10−21 V.m2), at different points in the ranges 10−9–10−4 s. The outcomes of our numerical simulations demonstrate the impact of various chemical processes on NO production and decrease, including: N(2D) + O2 → NO + O and: NO + O + N2 → NO2 + N2 respectively. Our research has shown that at 50 and 70 Td, nitrogen oxide generation is dominated by an O2 concentration of 5%, whereas at 90 Td, it is dominated by an O2 concentration of 10%. These outcomes are true for both reactions.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3