Microencapsulation for Clinical Applications and Transplantation by Using Different Alginates

Author:

Goncu Beyza,Yucesan Emrah

Abstract

Microencapsulation has been the most frequently used technique for several different disciplines such as cell-based therapies and/or transplantation. Technology is based on the idea of combining and coating a material or isolating from an external source. Microencapsulation may be performed with different materials and, among natural biocompatible materials, alginate-based microencapsulation technique is the most appropriate material for microencapsulation. The structural components of alginate materials are the derivatives of alginic acid, which is found in brown algae as an intercellular gel matrix. This alginate is preferred for clinical applications due to its safety in human studies. Therefore, the choice and the combined system need to be carefully optimized to achieve biocompatible application through cell microencapsulation especially for long term. Specifications of alginate such as primary source, isolation process, viscosity, and purity contribute to improve its biocompatibility. Clinically, cell microencapsulation is the major contribution to the field of transplantation by its technique and additionally provides local immune isolation. This chapter discusses the potential benefits of clinically suitable alginates and their applications. This promising technology may highlight its considerable potential for patients that require transplantation and/or replacement therapy in the future.

Publisher

IntechOpen

Reference76 articles.

1. de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Advanced Drug Delivery Reviews. 2014;67-68:15-34

2. Bisceglie V. Über die antineoplastische Immunität. Zeitschrift für Krebsforschung. 1934;40(1):141-158

3. David A, Day J, Shikanov A. Immunoisolation to prevent tissue graft rejection: Current knowledge and future use. Experimental Biology and Medicine (Maywood, N.J.). 2016;241(9):955-961

4. Algire GH. An Adaptation of the Transparent-Chamber Technique to the Mouse. JNCI: Journal of the National Cancer Institute. 1943;4(1):1-11

5. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Design, Development and Therapy. 2018;12:3117-3145

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3