Photovoltaic Power Forecasting Methods

Author:

Kaaya Ismail,Ascencio-Vásquez Julián

Abstract

The rapid growth in grid penetration of photovoltaic (PV) calls for more accurate methods to forecast the performance and reliability of PV. Several methods have been proposed to forecast the PV power generation at different temporal horizons. In this chapter the different methods used in PV power forecasting are described with an example on their applications and related uncertainty. The methods discussed include physical, heuristic, statistical and machine learning methods. When benchmarked, it is shown that physical method showed the highest uncertainties compared to other methods. In the chapter, the effect of degradation on lifetime PV power and energy forecast is also assessed using linear and non-linear degradation scenarios. It is shown that the relative difference in lifetime yield prediction is over 5% between linear and non-linear scenarios.

Publisher

IntechOpen

Reference45 articles.

1. Global solar photovoltaic capacity [Internet]. Available from: https://www.globaldata.com/global-solar-photovoltaic-capacity-expected-to-exceed-1500gw-by-2030-says-globaldata/ [Accessed: 28-October-2020]

2. Antonanzasa J, Osoriob N, Escobar R, Urraca R, Martinez-de-Pisona F.J, Antonanzas-Torresa F: Review of photovoltaic power forecasting. Solar energy. 2016; 136(15): 78–111. https://www.sciencedirect.com/science/article/abs/pii/S0038092X1630250X [Accessed: 10 November 2020]

3. Pelland, Sophie, Remund, Jan, Kleissl, Jan, Oozeki, Takashi and De Brabandere, Karel Photovoltaic and Solar Forecasting: State of the Art. (IEA-PVPS T14-01: 2013) , International Energy Agency Photovoltaic Power Systems Programme (2013). [Online]: https://iea-pvps.org/wp-content/uploads/2013/10/Photovoltaic_and_Solar_Forecasting_State_of_the_Art_REPORT_PVPS__T14_01_2013.pdf [Accessed: 5-January-2021]

4. Ascencio-Vasquez, J., Kaaya, I., Brecl, K., Weiss, K.-A., & Topic, M., Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules. Energies, 2019, 12, 4749. doi:10.3390/en12244749

5. Nazmul Islam Sarkar Md: Effect of various model parameters on solar photovoltaic cell simulation: a SPICE analysis. Renewables. 2016; 3–13. DOI: 10.1186/s40807-016-0035-3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3